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Abstract

We examine artifacts associated with the chiral symmetry break-

ing induced through the use of Wilson-Dirac fermions in lattice Monte

Carlo computations. For light quark masses, the conventional quenched

theory can not be defined using direct Monte Carlo methods due to the

existence of nonintegrable poles in physical quantities. These poles are

associated with the real eigenvalue spectrum of the Wilson-Dirac op-

erator. We show how this singularity structure can be observed in the

analysis of both QED in two dimensions and QCD in four dimensions.
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1 Introduction

During the past twenty years, considerable progress has been achieved in studying

the nonperturbative structure of gauge field theory through numerical computa-

tions of lattice field theory. The principal method of analysis has involved Monte

Carlo computations of physical quantities such as meson correlation functions where

fermions have been treated using the quenched approximation. The quenched ap-

proximation omits the contribution of the fermion determinant to the functional

integral defining the transition amplitudes. This approximation is known to be

quite sensitive to the particular formulation used to define fermions on the lattice.

In this paper we will address certain problems associated with the study of light

fermions using the Wilson-Dirac formulation [1] of lattice fermions.

In the continuum the usual Dirac operator defining the fermion action preserves

a chiral symmetry structure in the presence of gauge interactions which is broken

only by the addition of fermion mass terms or Yukawa interactions. In the Wilson-

Dirac formulation of lattice fermions, this chiral structure is explicitly broken by

the analogue of second derivative terms which are needed to remove the doubling

degeneracy of the naive lattice action for Dirac fermions. This chiral symmetry

breaking modifies the eigenvalue spectrum of the Wilson-Dirac operator from that

expected for the continuum Dirac operator. In Euclidean space, the chiral structure

of the usual Dirac operator implies a purely imaginary spectrum for its eigenvalues.

However, the Wilson-Dirac operator will have a spectrum of complex eigenvalues

which fill a region of the complex plane [2, 3]. In particular, there will be a spread

in the values of the real part of these eigenvalues which means that the massless

fermion limit cannot be uniquely specified and the chiral limit can only be defined

through ensemble averages of physical quantities. Unfortunately, the relevant physi-
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cal quantities, such as the pion correlator, are singular functions of the Wilson-Dirac

eigenvalues in the standard quenched approximation and there is growing evidence

[4] that ensemble averages may not exist for sufficiently small fermion masses. We

will give explicit evidence that this is the case for Wilson fermion theories in two

and four dimensions including QED2 and QCD4.

In previous work [4, 5] we have shown that the precisely real eigenvalues of the

Wilson-Dirac operator play a special role in the quenched theory. These eigenvalues

are the analogue of the zero modes of the continuum theory which are associated with

the topological structure of the background gauge field. In the lattice formulation

of the theory, these modes are responsible for the singular behavior of the quenched

theory for light fermion masses. The singularities arise when the fermion mass is

chosen to lie within the band of real eigenvalues which exists because of the chiral

symmetry breaking property of the Wilson-Dirac operator. This is well known

and is the principal reason for the “exceptional” configurations observed in Monte

Carlo calculations of the quenched theory [6]. Indeed, we have previously made a

careful analysis [4] of the correlation between the behavior of the real eigenvalue

spectrum and the observation of exceptional configurations. However, the problem

associated with these exceptional configurations goes beyond the annoying problem

of an occasional large contribution of a single configuration and its implication for the

statistical errors of the associated ensemble averages. We have previously pointed

out that this problem cannot be solved simply by accumulating larger statistical

samples as the exceptional configurations are expected to occur at a level where,

even in large statistical samples, the statistical errors will not diminish even in the

limit of infinite statistics.

The singularities associated with the real eigenvalues are related to both the chi-
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ral symmetry breaking associated with the Wilson-Dirac operator and the quenched

approximation which enhances singularities of the fermion propagators that are nor-

mally suppressed in the full unquenched theory. The fermion propagator can be

written as a sum over the eigenvalues of the Wilson-Dirac operator, λi,

SF (x, y, A(x)) =
∑
i

vi(x, A)wi(y, A)/(λi+m0) (1)

where v (resp. w) are left (resp. right) eigenmodes in a particular background gauge

field, A(x).

In the continuum, the fermion mass parameter being nonzero implies that there

are no singular terms in the sum when the gauge fields are smoothly varied. However,

this is not the case on the lattice. As the background gauge field is varied, isolated

real eigenvalues are restricted to remain on the real axis. The symmetries of the

Wilson-Dirac operator [4, 7] imply that the complex eigenvalues occur in complex

conjugate pairs and a single real eigenvalue cannot become two complex-conjugate

eigenvalues via smooth variation of the gauge potentials. Because of this constraint,

the contribution of the real eigenvalue modes to the functional integral over the

gauge potential can be reduced to a one- dimensional integral corresponding to the

position of the real eigenvalue. Hence, the quenched functional integral will contain

nonintegrable singularities associated with the contribution of the real modes if

the fermion mass is chosen to lie within the band associated with the spread of

the real eigenvalues. For example, the nonsinglet meson propagator is obtained by

squaring the quark propagator and, therefore, the real modes will generate a dipole

contribution to the meson correlator. If the bare fermion mass is chosen to lie within

the band of real eigenvalues, the Monte Carlo calculation will smoothly sample

eigenvalues in the neighborhood of fermion mass corresponding to a one-dimensional

integration parameter even though the original gauge integration corresponds to a
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very high dimensional space of integration variables. Hence, the sum for the meson

correlator effectively reduces to∫
DA Res(A)

(λpole(A) +mo)2
→
∫
dλ

Res(λ)
(λ+mo)2

(2)

which is not directly defined. For this reason we argue that the naive quenched

theory does not exist. The “exceptional” configurations observed in Monte Carlo

calculations are not strictly speaking an exceptional feature but are, instead, a

generic property of the quenched theory signaling the breakdown of the naive theory

for light fermion masses. The Monte Carlo averages simply do not converge for

sufficiently large statistical samples. Indeed, this singular behavior of the naive

quenched theory led us to propose [5] a modification of the quenched theory, MQA,

where these lattice fermion artifacts are explicitly removed in the evaluation of the

quenched correlation functions by restoring the chiral structure of the continuum

theory. Others have recently proposed that the entire band of light fermion masses

might be associated with a massless phase of the theory [8]. Unfortunately, we shall

argue below that this interpretation cannot be directly applied because the naive

quenched hadronic correlation functions simply are not defined in this region for the

reasons given above.

While we have given a general argument concerning the difficulties of defining

the naive quenched theory, we will now show explicit evidence of this singular be-

havior in a number of calculations in QED2 and QCD4. In particular, we wish

to show in this paper that nonintegrable singularities in the quenched functional

integral have a characteristic and clearly detectable statistical signature in a Monte

Carlo simulation. In Section 2, the singularity structure of quenched 2-dimensional

QED is explored using a variety of detailed statistical signatures. Explicit numer-

ical evidence is provided to show that the quenched functional integral of physical
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correlators contains nonintegrable singularities and is therefore undefined. A conve-

nient statistical diagnostic for revealing the existence and strength of nonintegrable

singularities in a quenched path integral is introduced and applied. Section 3 il-

lustrates certain universal aspects of the statistical behavior of the Monte Carlo

simulation of divergent integrals using a simple one-dimensional test function with

essentially identical behavior to meson correlators in quenched lattice gauge theory.

The analysis of Section 2 for QED2 is repeated in Section 4 using data from a full 4

dimensional quenched QCD simulation at relatively strong coupling (β=5.7) - one

infected with frequent “exceptional” configurations. In Section 5 we comment on

the use of spectral characteristics of the hermitian Wilson-Dirac operator in study-

ing new phases of quenched gauge theory with Wilson fermions, and emphasize the

need for a regularized version of quenched theory in studying otherwise undefined

correlator averages.

2 Quenched Singularity Structure of QED2

The two-dimensional version of massive quantum electrodynamics, the massive

Schwinger model, has frequently been used as a testbed for studying the struc-

ture of fermions in lattice field theory [2]. It shares many features in common with

four dimensional quantum chromodynamics, including aspects of chiral symmetry,

a nontrivial topological structure, fermion doubling problems on the lattice, and the

exceptional configuration artifacts of Wilson-Dirac fermions.

In a previous paper [4], we have emphasized the role that exactly real eigen-

values play in generating exceptional configurations. In QED2 with Wilson-Dirac

fermions, the real eigenvalues occur in bands rather than at a particular critical
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Figure 1: Wilson-Dirac spectrum near the left critical branch [QED2]. The

eigenvalue positions corresponding to mq = 0.10 and mq = 0.06 are denoted

by crosses.

value associated with the zero modes of the continuum theory. The bands tend to

narrow for gauge configurations generated with larger values of β corresponding to

the approach to the continuum theory.

We have carried out simulations of QED2 defined on a 10x10 lattice at β= 4.5.

According to the analysis of Smit and Vink [2], the massless theory is associated

with a bare fermion mass given by the approximate relationm0 = mc '2.0-0.65/β =

1.9155. In Fig(1), we show the spectrum of accumulated eigenvalues of the Wilson-

Dirac operator in a typical set of 500 consecutive (uncorrelated) configurations in

a quenched simulation at β=4.5. Only eigenvalues with a real part less than the

critical value of Smit and Vink are shown in this plot. Both real and complex
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eigenvalues exist in this region. Because the real eigenvalues are less than the critical

value, they will produce poles in the fermion propagators at positive values of the

fermion mass, leading to a singular behavior of physical quantities constructed from

these propagators in the quenched theory. We have marked the positions where real

eigenvalues would produce poles for mq ≡ m0 − mc=0.06 and 0.10, respectively.

The smaller fermion mass, mq=0.06, lies within the band of real eigenvalues, while

the larger mass, mq=0.10, lies outside this region and should not be associated with

singular behavior.

In the quenched theory, various physical quantities, such as correlation functions,

can be computed from products of the valence fermion propagator. The propagators

in turn can be written as a spectral sum involving eigenfunctions of the Wilson-

Dirac operator and associated eigenvalues as in Eq(1). The pseudoscalar (“pion”)

propagator is then given as a sum over the eigenvalues:

J55(x, y) =
∑
ij

Trγ5rij(x, y, A)γ5rji(y, x, A)
(λi(A) +m0)(λj(A) +m0)

(3)

where m0 = mq +mc. The eigenvalue dependence of the denominators exhibits the

potential for double pole singular behavior in an integral over A (for heavy-light

mesons, one would encounter a single pole, for light-light-light baryons in QCD4, a

triple pole in the quenched functional integral).

As an example of this divergence, we computed the pseudoscalar propagator

at Euclidean time t=2 for mq=0.06 and 0.10. In Fig(2) the cumulative averages

and associated statistical errors are plotted for a sample of 1000 quenched gauge

configurations separated by 10 Metropolis sweeps. The propagator averages for the

lighter mass clearly reflect the presence of singularities in the functional integral.

After apparent convergence with the first 100 configurations, the contributions of

a number of exceptional configurations become dominant and no reliable average
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value can be extracted from the simulation. For this mass value, we are within the

band of real eigenvalues and the Monte Carlo process eventually samples eigenvalues

arbitrarily close to the double pole singularity in the pseudoscalar propagator. We

can compare this behavior to the propagator average for the larger mass, mq=0.10,

which lies outside the band of real eigenvalues (see Fig(3)). Here the propagator

appears to converge to its average value after about 400-500 sweeps and there is no

obvious singular behavior.

Even if we do not directly know the eigenvalue spectrum (and this is in gen-

eral the case for QCD in 4 dimensions), we can infer the singular structure of the

quenched integral directly from physical quantities such as meson propagators. For

example, the pseudoscalar propagator in Eq(3) is a singular function as an eigenvalue

approaches the critical value λi → m0. In this singular limit, one eigenvalue will

dominate the propagator sum in the form of a double pole singularity. The Monte

Carlo average will sample eigenvalues in the neighborhood of this singularity so long

as the mass lies within the band defined by the purely real part of the spectrum.

It should be expected that eigenvalues close to the singularity will be uniformly

sampled (given sufficient statistics) as neighboring gauge configurations smoothly

vary the values of the real eigenvalues. (This uniform sampling is a consequence of

the fact that, unlike full QCD, the distribution of quenched gauge configurations is

unaffected by singularities in the quark propagator.) Hence a definitive signature of

the singular structure can be obtained from the propagator by computing the value

of the inverse square root of the propagator 1/rP≡ 1√
P (t)

. Ordering the configu-

rations according to the size of 1/rP should then reveal a linear extrapolation to a

zero value at the singularity, reflecting the uniform sampling by the Monte Carlo in

the neighborhood of the singularity. In Fig(4) we show these plots for the two mass
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Figure 2: Convergence of pseudoscalar correlator with increasing statistics in

quenched QED2. Here mq=0.06.
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Figure 3: Convergence of pseudoscalar correlator with increasing statisitics in

quenched QED2. Here mq=0.10.
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values discussed above.

It is clear that the smaller mass value, mq=0.06, shows a smooth extrapolation

of 1/rP to zero while the larger value, mq=0.10, reveals a gap. Since the poles are

expected to dominate only for configurations with eigenvalues close to the poles,

only the behavior as 1/rP→0 is relevant here. In Figure(5), we focus on this region

for the small mass case to bring out clearly the linear behavior close to the origin.

The correlation between the singular behavior observed in the 1/rP plots and

the real eigenvalues can be seen by comparing the raw data with propagators modi-

fied using the MQA procedure [5]. This procedure modifies fermion propagators by

shifting the poles due to real eigenvalues to the critical value expected for the con-

tinuum theory. Only real poles to the left of the critical value, as shown in Fig(1),

are shifted in this procedure. In applying the procedure to the QED2 data, it is clear

that any difference observed in the behavior of the correlation functions is directly

attributable to the structure of the real eigenvalues. In Fig(6) we compare the 1/rP

plot for the raw propagator with that for the MQA shifted propagator. The con-

figurations are, in each case, ordered according to the value of the raw propagator.

It is apparent that all the points close to the origin in this plot were associated

with the singular structure of the real modes. This correlation can be made more

explicit by considering only the configurations with real poles lying within the band

shown in Fig(1). We have checked that in QED2 these configurations all correspond

to nonzero topological charge. In Fig(7), we plot the value of 1/rP for each con-

figuration versus the position of the nearest real eigenvalue for that configuration.

The close correlation is obvious and the position of the singular eigenvalue is clearly

identified for this mass value, mq=0.06. In many cases (especially in QCD4) it is

not possible to identify all the real poles. However, we have seen that the behav-

12



0 200 400 600 800 1000

configuration number

0

0.5

1

1.5

2

2.5

3

3.5

P
(t

=
2)

-1
/2

Figure 4: 1/rP plot for 1000 configurations in QED2. The configurations are

ordered from lowest to highest value of 1/rP. Results for mq = 0.10 (dotted

curve) and mq = 0.06 (solid curve) are shown.
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first 40 configurations.
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ior of 1/rP can clearly be used to exhibit the singularities associated with bands

of real eigenvalues. The method will only be effective however when there is suffi-

cient Monte Carlo statistics to smoothly sample the neighborhood of the propagator

singularities.
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Figure 7: 1/rP versus the position of the nearest real pole eigenvalue Re λ for

mq = 0.06. [QED2].
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3 A simple test function

We have argued that the presence of a band of real eigenvalues of the Wilson-Dirac

operator implies that the unmodified quenched functional integral simply does not

exist for bare fermion masses which place the propagator singularities within the real

eigenvalue band. Even with unlimited Monte Carlo statistics, the real poles generate

exceptional configurations at a fixed rate, with fluctuations increasing as eigenvalues

appear closer to the poles of the fermion propagator. This problem can be seen in the

clearest possible way by attempting to estimate a singular one dimensional integral,

corresponding to the meson propagator, by Monte Carlo methods. The properties

of such a simulation, where we know that the answer does not exist, can then be

compared with our Monte Carlo simulations of QED2 and QCD4.

The test function we wish to examine is a simple integral of a double pole

singularity with a spectral weight similar to that seen for the real eigenvalues of the

QED2 analysis. We chose an integral of the form

I =
∫ ∞

0
dx2x

e−x
2

(x− a)2 + b
(4)

For positive values of a and b=0 the integral is divergent and we do not expect

the estimate of its value by Monte Carlo methods to converge. Analogously to the

case of QED2, we generate 1000 configurations according to the spectral weight

2x exp(−x2). To imitate the contributions of configurations with complex poles, we

have randomly chosen the width parameter b to be either zero or a fixed nonzero

value for each term in the sum. As a result we have a sample of 200 configurations

to integrate a singular double pole term (with b=0) and 800 configurations with

integrable complex pole contributions (the 4:1 balance chosen here was similar to

that found in the QED2 simulation). In Fig(8) the cumulative averages and errors

18



for the integral are plotted as a function of the number of configurations included (cf

Fig(2)). While there seems to be an approximate convergence with 300-400 config-

urations, the exceptional terms associated with Monte Carlo sampling close to the

pole causes the error eventually to explode- reflecting the fact that the integral does

not exist. This plot is remarkably similar to the plot for the pseudoscalar propagator

for QED2 shown in Fig(2). In fact, the cause of the exceptional configurations in

both cases is exactly the same - a nonintegrable dipole singularity- so the resem-

blance should hardly be surprising. We can also plot the analogue of the 1/rP plot

of Fig(4). In Fig(9) we show the inverse square root of the individual summands

placed in sequential order. The plot again shows the linear behavior near the origin

due to sampling near the pole singularity. In addition, we have shown, in open

circles, the effect of applying the equivalent of the MQA shift moving subcritical

real eigenvalues to a=0; again, this removes the linear part of the curve as in the

QED2 case and introduces a gap. We note that fluctuations in the imaginary part

of the eigenvalues and in the pole residues for QED2 explain the deviations between

QED2 and the simple test function. However, the approximate quantization of the

pole residues (which are effectively instanton zero modes in the QED2 case) is im-

portant in generating the observed linear behavior. From the analysis we see that

the 1/rP plot provides a useful and clear signal of nonintegrability in Monte Carlo

simulations.
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(Eq. 4) versus number of sampling points (“configurations”).
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4 Quenched Singularity Structure of QCD4

Quenched calculations of quantum chromodynamics in four dimensions are also

known to suffer from problems associated with exceptional configurations and sin-

gularities occasioned by real eigenvalues. In a previous paper [5] we have been able

to identify the spectrum of subcritical real eigenvalues using fits to the kappa de-

pendence of observables such as the integrated pseudoscalar density. We can also

study the statistical behavior of the quenched singularities using the 1/rP plots

for the pion propagators discussed above. In Fig(10) we show the 1/rP plot for a

163x32 lattice at β=5.7 and a kappa value of 0.1685, corresponding to a quark mass

within the band of real eigenvalues for this β. There is clear evidence of the linear

behavior near the origin. We can see that this behavior is directly attributable to

real eigenvalues by plotting (open circles) the same configurations with propaga-

tors computed using the MQA analysis where only real poles are shifted. Again,

all of the contributions near the origin are removed, indicating that the real poles

dominate the exceptional configurations. Here again, direct Monte Carlo simulation

of the quenched functional integral will be seen to fail once sufficient statistics are

accumulated. At heavier quark masses the density of real eigenvalues is smaller and

a much higher level of Monte Carlo statistics may be needed to clearly identify the

singular behavior, which is nevertheless still present, at least for fermion masses

m0 < 2.0.

The singular behavior of the Monte Carlo integrals (deriving in turn from the

underlying nonintegrable singularity of the quenched functional integral) is not a

unique feature of the Wilson action. Improved actions, such as the Sheikholeswami-

Wohlert [9] action, also suffer from the singularities associated with real eigenval-

ues. Subcritical real modes can be extracted from the kappa dependence of hadron
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Figure 10: 1/rP plot for 200 configurations at β=5.7 on a 163x32 lattice

[QCD4]. The Wilson quark propagators used κ=0.1685. Configurations are

ordered by value of 1/rP. The naive pseudoscalar correlator results are denoted

as a solid curve, while the corresponding results using the MQA proceedure

are denoted by open circles.
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propagators or we may use the 1/rP test to see the impact of the exceptional con-

figurations. In Fig(11) we show the 1/rP plot for a 123x24 lattice at β=5.7 with

clover coefficient Csw =1.57 and κ =0.1425. Once more, the linear behavior near

the origin gives a clear signal of the singular nature of the unmodified Monte Carlo

integral and the comparison with the MQA analysis shows that the real eigenvalues

play the essential role.

These results provide convincing evidence that real modes are responsible for

generating the singular behavior of the unmodified quenched approximation. For

sufficiently light quark masses, hadron propagators determined from the valence

quark propagators contain nonintegrable singularities. With low statistics these

singularities are manifested by the appearance of an occasional exceptional con-

figuration. However, it is inevitable that the Monte Carlo average will diverge as

the statistics is increased and the eigenvalues near the propagator poles are closely

sampled. While we have emphasized spectral properties associated with the Wilson-

Dirac operator, it is important to realize that these nonintegrable singularities are

present in completely physical hadronic amplitudes in the unmodified quenched the-

ory, such as the pseudoscalar correlation functions.

5 Exceptional configurations, gapless phases,

and chiral source terms

A number of authors have preferred to use a hermitian operator H(m) [10] to discuss

properties of the quenched theory. This operator is simply related to the Wilson-

Dirac operator

H(m) = γ5(D−W ) (5)
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Figure 11: 1/rP plot for 200 configurations at β=5.7 on a 163x32 lattice

[QCD4]. The SW quark propagators used κ=0.1425 and Csw =1.57. Con-

figurations are ordered by value of 1/rP. The naive pseudoscalar correlator

results are denoted as a solid curve, while the corresponding results using the

MQA proceedure are denoted by open circles.
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but has a completely different eigenvalue spectrum. Since H(m) is hermitian it has

only real eigenvalues and (with the exception of zero eigenvalues) it is not possible to

uniquely associate eigenvalues of H(m) with those of the Wilson-Dirac operator in

a 1-1 fashion, and therefore to identify modes which play the special role of the real

eigenvalues in the Wilson-Dirac case. Nevertheless, the physical quantities of the

quenched theory (meson propagators and other hadronic amplitudes) are unique and

share the same singular behavior that we have established using the Wilson-Dirac

approach.

The small eigenvalues of the H(m) operator are usually identified with the dy-

namical breaking of chiral symmetry. However, we know that these eigenvalues must

also reflect the nonintegrable singularities found in the Wilson-Dirac approach. In-

deed, exactly zero eigenvalues arise from common eigenfunctions. By varying the

fermion mass we can establish the same band of masses which correspond to singu-

larities caused by subcritical real eigenvalues of the Wilson-Dirac operator. Thus,

the closing of a gap in the spectrum of the H(m) operator corresponds in part to

the appearance of nonintegrable contributions in the quenched path integral. In

Fig(12,13) we display the central part of the spectral region of H(m) in QED2 for

the bare quark value masses 0.06 and 0.10 studied earlier. The disappearance of a

gap for the smaller mass exactly corresponds to the fact that the rightmost cross

in Fig(1) is immersed in a band of real eigenvalues of the complex Wilson-Dirac

operator.

Some authors [8] have recently suggested that this band should reflect the dy-

namical realization of the chiral phases of the quenched theory. They propose an

identification of the entire band with a massless phase of the theory. These con-

clusions are based on studies with limited statistics on small lattices. We do not
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Figure 13: Spectral density of H(m) for QED2 with mq = 0.10. Bin size 0.01.

think that their conclusions can be sustained once larger data samples are exam-

ined. The arguments presented above show that the normal Monte Carlo integral

of the quenched theory for meson propagators simply does not exist if the fermion

masses lie within the band identified with the putative massless phase . Hence,

any inference of a particular physical behavior of the meson propagators based on

a small sample of configurations, particularly exceptional configurations where real

modes are present, is unwarranted. We make no specific claims here about the pos-

sible existence, nonexistence or properties of additional massless chiral phases in the

unquenched theory at infinite volume. However, for the quenched Wilson theory at

finite volume, the detailed statistical analyses presented in this paper clearly demon-

strate that conventional hadron correlators (and in particular, the pion correlators

needed to establish the chiral spectrum in any putative new phase) simply do not
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exist once the gapless region is entered.

The suggestion that the flavor-parity breaking Aoki phase [11, 12] of Wilson

lattice QCD be studied by perturbing the system with a flavor-parity noninvariant

source leads to an interesting point concerning the divergence of quenched ampli-

tudes. The addition to the theory of any nontrivial chiral/flavor rotation of the

conventional mass term as a source term (here we are dealing with two flavors of

Wilson fermions, and ~σ are the corresponding isospin generators)

hψ̄ψ → hψ̄ei
~θ·~σγ5ψ (6)

modifies the hermitian Dirac operator by

H(m)→ H(m) + hγ5 cos(θ) + ih sin(θ)θ̂ · ~σ (7)

The additional antihermitian term (nonvanishing for any θ 6= 0, nπ) clearly renders

the spectrum of H(m) complex, introducing a gap, as all eigenvalues λ of H(m)

now satisfy |λ| > h| sin(θ)|. Consequently, pion correlators computed with quark

propagators including the source term will now be perfectly well-defined even in the

quenched theory, as the nonintegrable poles are moved away from the integration

contour of the quenched path integral. (This corresponds to the situation in the

one-dimensional test integral of Section 3 when b 6= 0). The properties of meson

correlators in the Aoki phase can thus be studied in a well-defined way at large

volume before taking the limit h → 0, as is done typically in order to isolate the

condensate. Of course, at finite volume, the singularity will return as the source

term is set to zero, so as in the case of studies of spontaneous symmetry breaking

at finite volume one has to be careful to extrapolate in an appropriate way from

larger values of the source parameter. But in the absence of such a source term

in the propagator inversion, or of pole shifting as in the MQA procedure, one will
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necessarily encounter completely undefined statistical averages of meson propagators

as more configurations are included in a quenched simulation.

6 Summary

We conclude by summarizing our basic results on the nature of the quenched chiral

artifacts in the Wilson-Dirac formulation of lattice gauge theory:

(1) The appearance of exceptional configurations in quenched simulations is directly

attributable to the appearance of exactly real modes of the Wilson-Dirac operator

in nontrivial topological charge sectors of the theory.

(2) Even in cases where the extraction of the spectrum of the Wilson-Dirac operator

is computationally prohibitive, there are a number of reliable statistical tests that

can be applied to diagnose the presence of the exactly real modes. In particular, the

convergence properties of cumulative averages of physical quantities (cf Figs (2,3,8)),

as well as the behavior of the reordered inverse square-root of meson correlators (cf

Figs(4,5,6,7,9,10,11)) can be used to signal directly the appearance of such modes.

(3) Finally, the statistical diagnostics used here clearly reveal the nature of the sin-

gularity of the quenched functional integral which corresponds to a one-dimensional

integral with a nonintegrable singularity. The singularity can be removed, and a

well-defined quenched theory obtained, either by the MQA pole-shifting technique

introduced in our earlier papers [4,5], or by introducing a chirally rotated source at

interim stages of the simulations.
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